«Принцы» и «нищие» в царстве минералов

Лев Барский
100
10
(1 голос)
0 0

Книга рассказывает о наиболее важных представителях царства минералов — об истории их освоения, происхождении, использовании в промышленном производстве, о том, как добывали минеральное сырье в прошлые века, и о сегодняшних методах обогащения полезных ископаемых (минералургии). В популярной форме описаны процессы извлечения золота, алмазов, угля, цветных и редких металлов, железа, марганца и других полезных компонентов из их природных смесей — руд с помощью флотации, магнитной сепарации, гравитации.

Книга добавлена:
1-05-2024, 16:29
0
114
65
«Принцы» и «нищие» в царстве минералов
Содержание

Читать книгу "«Принцы» и «нищие» в царстве минералов" полностью



Мечта получить изумруд в лабораторных условиях владела многими исследователями. Но уже научились выращивать в пламени горелок рубины, уже был синтезирован и сам «неодолимый» — алмаз. А изумруд все не поддавался.

Успех пришел к младшему научному сотруднику Института геологии, геохимии и геофизики Сибирского отделения Академии наук СССР Г. В. Букину, работавшему в лаборатории А. А. Годовикова.

Искусственные изумруды получают при очень высоком давлении — 150 тыс. атмосфер и температуре 1550 °C. По внешнему виду они полностью имитируют природные. Для их диагностики применяются современные инструментальные методы — инфракрасная спектроскопия, электронный парамагнитный резонанс и другие, позволяющие определить примесные центры в кристаллах. Эти методы и помогли определить температуру, давление и концентрацию хрома и ванадия, при которых синтезируется изумруд.

Синтетические изумруды и александриты — не только ювелирные камни. Они оказались незаменимыми в квантовой электронике, нелинейной оптике. Изумруд используется в СВЧ-усилителях, резонаторных мазерах, работающих в диапазоне 3 см, а также для мазеров бегущей волны, применяемых в астрономических исследованиях. Выращивают кристаллы размером до 120 мм с заданными оптическими характеристиками.

Однако практическое значение и ценность бериллов не ограничиваются драгоценными кристаллами. Призматические шестигранные кристаллы бериллов прозрачны или полупрозрачны, хорошо образованы и имеют размеры от микроскопических до нескольких метров. Как силикатный минерал, берилл растворяется только в плавиковой кислоте. К сожалению, несмотря на высокую твердость, все бериллы очень хрупкие.

В современной технике большую ценность приобрел непрозрачный берилл, скромный брат роскошных самоцветов, важнейшее сырье для получения металла — бериллия.

В 1798 г. при химическом анализе изумруда и берилла французский химик Л. Воклен открыл окисел нового, ранее неизвестного элемента, который по имени минерала был назван им «берилловой землей» (землями тогда называли окислы металлов). Год спустя новому элементу было дано название «глюциний» из-за сладкого вкуса его солей (от греч. «глюкос» — сладкий). Новое название, однако, не получило широкого распространения и ныне сохранилось только во Франции. Лишь через тридцать лет после открытия элемента ученым удалось получить металлический бериллий в виде порошка.

Это один из наиболее легких металлов. Он в полтора раза легче алюминия и в четыре раза — нержавеющей стали. Ценнейшее свойство бериллия — жаростойкость, позволяющая использовать изделия из него при высоких температурах. Этим свойством обладают и его многочисленные сплавы. Незначительная добавка бериллия к некоторым металлам резко улучшает их механические свойства. Сплавы его используются для производства деталей и конструкций, подвергающихся длительному интенсивному напряжению или трению при нормальной и высокой температуре. Особой известностью пользуются бериллиево-медные бронзы, содержащие всего 1–5 % бериллия. Механические свойства (прочность, твердость и т. д.) бериллиевых бронз уникальны. Замечательная особенность их — увеличение в несколько раз твердости и прочности сплавов при высоких температурах. Бериллий находит применение в сплавах с алюминием, магнием и другими металлами, придавая им вязкость, жаростойкость, легкость и устойчивость к коррозии. Легкие и прочные бериллиево-алюминиевые сплавы — весьма перспективный материал для ракетостроения и космической техники.

Атомная структура бериллия позволяет использовать его и в атомных реакторах в качестве замедлителя нейтронов. Он может выполнять и роль отражателя нейтронов, он радиационно стоек при высоких температурах. На этих свойствах основано применение бериллия в атомных реакторах морских судов и самолетов, в теплозащитных конструкциях космических кораблей и ракет.

До 1939 г. мировое производство бериллия и его солей не достигало и 10 т в год. Однако с началом второй мировой войны интерес к бериллию резко повысился. Потребление бериллия воюющими странами увеличилось в пять раз. Началась погоня за источниками дефицитного бериллиевого сырья.

Соединенные Штаты Америки, не считаясь с затратами, вывозили берилловые концентраты из Бразилии и Южной Африки на самолетах. Гитлеровцы, отрезанные от источников сырья, пытались использовать нейтральную Швейцарию для контрабандного ввоза бериллиевой бронзы: от швейцарских «часовщиков» американским фирмам поступил заказ на такое количество бериллиевой бронзы, которого хватило бы на пружины для часов всему человечеству лет на пятьсот вперед. Хитрость была разгадана, однако пружины из бериллиевой бронзы время от времени появлялись в новейших марках авиационных скорострельных пулеметов, поступавших на вооружение фашистской армии.

В послевоенные годы интерес к бериллию еще более увеличился. Причиной явилось открытие свойств сверхчистого металлического бериллия, позволяющих применять его в атомных реакторах.

Источниками берилла служат в основном гранитные пегматиты, крупные жилы которых известны во многих районах земного шара. Пегматиты возникают при кристаллизации последних порций гранитных расплавов. В условиях высоких давлений из расплавов, проникших в трещины горных пород, медленно образовывались огромные кристаллы полевых шпатов, достигающие нескольких метров в поперечнике, сплошные массы кварца, крупные кристаллы светлой слюды и разнообразные минералы редких элементов, в том числе и берилл. Отдельные его кристаллы, росшие в пустотах, наполненных газоводным высокотемпературным раствором, приобретали качество первоклассных драгоценных камней. Кристаллы берилла в пегматитах отличаются крупными размерами. Обычно они бывают до 5 см в поперечнике при длине в 10–15 см. Нередки и кристаллы-гиганты, масса которых достигает десятков, сотен и даже тысяч килограммов. Наиболее крупный из известных кристаллов берилла достигал 9 м в длину и 1,5 м в поперечнике.

Кристаллы берилла распределены в пегматитах исключительно неравномерно. Часто, обнаружив гнездо кристаллов массой до тонны, рудокопы затем в течение многих дней безуспешно «вгрызаются» взрывчаткой в плотную породу, пока не наткнутся на новое гнездо или крупный кристалл. В Африке или Бразилии еще недавно тысячи местных жителей за гроши перерабатывали огромные объемы породы, выискивая шестигранные кристаллы берилла. Так кустарным способом ежегодно добывалось несколько тысяч тонн бериллиевого концентрата.

Поиски бериллия привели к открытию месторождений нового типа. По своим химическим свойствам бериллий — типичный амфотерный элемент. Его особенность — способность к образованию «комплексных» соединений; в них амфотер вступает в прочную связь с кислотным анионом, образуя комплексный ион. Геохимик А. А. Беус предположил, что бериллий может переноситься в природных растворах в составе комплексных соединений и выделяться из растворов в результате их взаимодействия с определенными горными породами. Задача поисков месторождений бериллия новых типов облегчалась тем, что академик Д. С. Коржинский и его школа длительное время изучали аналогичные геологические и геохимические особенности горных пород, первичный состав которых был изменен под влиянием глубинных растворов и с которыми уже ранее была известна связь месторождений других редких элементов — вольфрама и олова.

Отныне ведущее место в сырьевом балансе бериллия в мире занимают так называемые пневматогидротермальные месторождения, образованные в результате взаимодействия высокотемпературных паров и растворов («ппевма» — в переводе с греческого означает газ, «гидро» — водный, «терма» — тепло) с определенными типами горных пород. В подобных месторождениях накапливаются огромные массы бериллия, измеряемые десятками тысяч тонн. Концентрация металла в рудах этих месторождений значительно выше, чем в пегматитах. Часто они сопровождаются значительными скоплениями минералов фтора, которые сами по себе имеют промышленную ценность и, кроме того, выполняют роль «поискового признака» на бериллий.

Промышленное освоение новых месторождений столкнулось с рядом трудностей. Минералы бериллия, которые в пегматитах легко отбирались вручную, здесь оказались весьма мелки (обычно доли миллиметра), что потребовало разработки специальных методов их обогащения.

Первичное обогащение бериллийсодержащих руд основано на уникальной способности ядер бериллия испускать нейтроны при облучении γ-лучами низкой энергии. Фотонейтронный метод сортировки позволяет выделить черновой концентрат из относительно бедной руды. Теперь он полностью вытеснил ручную сортировку.

Берилл — силикатный минерал, не обладающий ни магнитными свойствами, ни высокой плотностью, ни природной гидрофобностью. Растворяется он также в весьма специфических условиях. Тем не менее обогащение руд берилла возможно. Например, высокая твердость берилла и хризоберилла позволяет применять избирательное измельчение при наличии в руде мягких пород: слюдистых сланцев, талька, глины.

Чтобы извлечь берилл, сначала флотируют слюды катионным собирателем. Затем пульпу промывают для удаления катионов, воду смягчают, обрабатывают руду плавиковой кислотой (кислотная схема) или едким натром (щелочная схема) и флотируют берилл жирными кислотами (олеиновой и др.). Плавиковая кислота, как и едкий натр, является активатором флотации берилла; их действие связано с частичным растворением на поверхности минерала кремнекислородных колец (Si6О18), благодаря чему в кристаллической решетке минерала обнажаются катионы бериллия. Кварц и полевой шпат при этом остаются без изменений и не флотируют.

Попавшие в берилловый флотационный концентрат турмалин и гранат отделяют магнитной сепарацией. Окончательную очистку от примесей производят гидрометаллургическим методом: выщелачиванием и обжигом при высокой температуре. Промышленное значение приобрели и другие минералы бериллия: бертрандит, фенакит, барилит, которые также являются силикатами.

Комплексная переработка пегматитовых и пневмато-гидротермальных руд, являющихся, как правило, редкометальными, предусматривает извлечение тантала, ниобия, лития, слюды, полевых шпатов, турмалина, касситерита.

Следует заметить, что бериллий является одним из самых токсичных элементов, вызывающих легочные заболевания, рак и специфическое заболевание — бериллез.


Скачать книгу "«Принцы» и «нищие» в царстве минералов" бесплатно в fb2


knizhkin.org (книжкин.орг) переехал на knizhkin.info
100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Рукнига » Научная литература » «Принцы» и «нищие» в царстве минералов
Внимание